Lipid rafts reconstituted in model membranes.

نویسندگان

  • C Dietrich
  • L A Bagatolli
  • Z N Volovyk
  • N L Thompson
  • M Levi
  • K Jacobson
  • E Gratton
چکیده

One key tenet of the raft hypothesis is that the formation of glycosphingolipid- and cholesterol-rich lipid domains can be driven solely by characteristic lipid-lipid interactions, suggesting that rafts ought to form in model membranes composed of appropriate lipids. In fact, domains with raft-like properties were found to coexist with fluid lipid regions in both planar supported lipid layers and in giant unilamellar vesicles (GUVs) formed from 1) equimolar mixtures of phospholipid-cholesterol-sphingomyelin or 2) natural lipids extracted from brush border membranes that are rich in sphingomyelin and cholesterol. Employing headgroup-labeled fluorescent phospholipid analogs in planar supported lipid layers, domains typically several microns in diameter were observed by fluorescence microscopy at room temperature (24 degrees C) whereas non-raft mixtures (PC-cholesterol) appeared homogeneous. Both raft and non-raft domains were fluid-like, although diffusion was slower in raft domains, and the probe could exchange between the two phases. Consistent with the raft hypothesis, GM1, a glycosphingolipid (GSL), was highly enriched in the more ordered domains and resistant to detergent extraction, which disrupted the GSL-depleted phase. To exclude the possibility that the domain structure was an artifact caused by the lipid layer support, GUVs were formed from the synthetic and natural lipid mixtures, in which the probe, LAURDAN, was incorporated. The emission spectrum of LAURDAN was examined by two-photon fluorescence microscopy, which allowed identification of regions with high or low order of lipid acyl chain alignment. In GUVs formed from the raft lipid mixture or from brush border membrane lipids an array of more ordered and less ordered domains that were in register in both monolayers could reversibly be formed and disrupted upon cooling and heating. Overall, the notion that in biomembranes selected lipids could laterally aggregate to form more ordered, detergent-resistant lipid rafts into which glycosphingolipids partition is strongly supported by this study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hemagglutinin of influenza virus partitions into the nonraft domain of model membranes.

The HA of influenza virus is a paradigm for a transmembrane protein thought to be associated with membrane-rafts, liquid-ordered like nanodomains of the plasma membrane enriched in cholesterol, glycosphingolipids, and saturated phospholipids. Due to their submicron size in cells, rafts can not be visualized directly and raft-association of HA was hitherto analyzed by indirect methods. In this s...

متن کامل

Organization and dynamics of Fas transmembrane domain in raft membranes and modulation by ceramide.

To comprehend the molecular processes that lead to the Fas death receptor clustering in lipid rafts, a 21-mer peptide corresponding to its single transmembrane domain (TMD) was reconstituted into mammalian raft model membranes composed of an unsaturated glycerophospholipid, sphingomyelin, and cholesterol. The peptide membrane lateral organization and dynamics, and its influence on membrane prop...

متن کامل

The state of lipid rafts: from model membranes to cells.

Lipid raft microdomains were conceived as part of a mechanism for the intracellular trafficking of lipids and lipid-anchored proteins. The raft hypothesis is based on the behavior of defined lipid mixtures in liposomes and other model membranes. Experiments in these well-characterized systems led to operational definitions for lipid rafts in cell membranes. These definitions, detergent solubili...

متن کامل

Lipid rafts, detergent-resistant membranes, and raft targeting signals.

Lipid rafts are liquid-ordered (l(o)) phase microdomains proposed to exist in biological membranes. Rafts have been widely studied by isolating l(o)-phase detergent-resistant membranes (DRMs) from cells. Recent findings have shown that DRMs are not the same as preexisting rafts, prompting a major revision of the raft model. Nevertheless, raft-targeting signals identified by DRM analysis are oft...

متن کامل

Glutamate-binding affinity of Drosophila metabotropic glutamate receptor is modulated by association with lipid rafts.

Metabotropic glutamate receptors (mGluRs) are responsible for the effects of glutamate in slow synaptic transmission, and are implicated in the regulation of many processes in the CNS. Recently, we have reported the expression and purification of a mGluR from Drosophila melanogaster (DmGluRA), a homologue of mammalian group II mGluRs. We have shown that ligand binding to reconstituted DmGluRA r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 80 3  شماره 

صفحات  -

تاریخ انتشار 2001